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ABSTRACT
In a Maxwell-fluid description large amplitude electrostatic and
electromagnetic oscillations in a cold plasma are analyzed in situations where
the spatial variations are one-dimensional and the ions form a fixed neutrali-
zing background. In the electrostatic zpproximation a Iagrangian description
following the electron motion is adopted, and exact solutions obtained &@

.

these variables in situations where multistream flow doeas not deveiop. The ™
inversion to Eulerian coordinates is carried out explicitly for the particular
example of an initial sinusoidal perturbation in density. A model describing

the dispersive modifications of (weak) thermal effects is analyzed showing ths
phase-mixing of (moderately) large amplitude initial disturbances. After

sufficient time, the electron fluid becomes stationary and a low level of

electric field remains balancing the force due to pressure variations. in
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addition, for the case of nonlinear electrostatic oscillations perpendicular
to a static magnetic field, the exact solution in Lagrangian variables shous
that for a cold plasma coherent oscillations at the upper hybrid fregqueacy
are maintained indefinitely over the regions of initial excitation,

.- Electromagnetic oscillations are ccnsidered as developing from
small initial values on the background cf the large-amplitude longitudinal
oscillations already calculated. The resulting wave egquation is analyzed for
several limiting cases. It is shown that for sufficiently short wavelengths
of the transverse fields there exists an infinite nuuber of narrow ranges of
the wave number in which the transverse oscillations are unstable. The growtn
is ultimately limited by the magnetic force which was neglected in the des-
cription of the longitudinal motion.

Finally stationary solutions are studied. In the electrostatic
approximation a very special class of periodic Bernstein-Greene-Kruskal waves
without trapped particles is obtained. Again the electromagnetic solutions
are unstable (in space), the growth being limited by the same effect as in
the time-dependent problem. A simple class of special stationary solutions

is obtained for the complete problem including all magnetic force terms.




I. INTRODUCTION

It is the purpose of the present article to consider in some debnil
the problem of large-amplitude electrostatic and electromagnetic oscillations
in a cold plasma in situations where the spatial variations are one-dimensioral,
and the ions form a fixed neutralizing background. The nonlinear electro-
static problem of Dawson™ and Kalmano is briefly formulated in Section II-(a!
introducing Iagrangian variables following the electron fluid, and the exact
solutions for relevant physical quantities are obtained in those varizbles.
Throughout the present paper, analysis is restricted to initial-value problems
for which multi-stream flow does not develcp. In Section II-(b), a particular
example is considered in which the electron fluid is initially at rest, and
vhe electron density has the form,

n(xo,o) = no(lfacoskxo) , (1.1)
where N is the uniform ion background density. The inversion to Eulerian
variables is carried out explicitly and exact nonlinear expressions for the
velocity, electric field, and density in the laboratory frame are obtained.
The relation between these solutions and the solution to the Vliasov equation
with appropriate (cold) initial conditions is briefly discussed.

Various extensions of the electrostatic problem, and the inclusion
of electromagnetic effects, are considered in Sections III and IV, respectivey
In Section III-(a) the analysis of II-(a) is extended to describe large--
amplitude electrostatic oscillations perpendicular to a static magnetic fielgd,
and the exact solution is obtained in Lagrangian variables. In this case,
coherent oscillations at the upper hybrid frequency are maintained indefinitely

over the region of initial excitation and remain local to that region. A mocel




relevant to describing the dispersive effects of small, but finite, plasma
temperature is analysed in Section ITI-(b). Coherent oscillations at the
plasma frequency are no longer maintained for all time as in the cold plasma
considerations of II-(a). It is shown that for absolutely integrable initial
disturbances the electron velocity phase mixes to zero; however, a low level
of electric field, balancing the force due tc pressure variations, remains

in the time-asymptotic limit. In Section III-(c) the analysis of II-(a) is
nodified by the inclusion of a collisional drag term in the equation of motion
for the electron fluid. For arbitrary, large-amplitude, initial disturbances
(which do not lead to multistream flow), this dissipation leads to a uniform,
field-free, stationary, equilibrium. For clarity, the various generalizatious
of the electrostatic problem considered in Section ITI have been treated
separately; it should be noted, however, that nothing restricts the effects

of static magnetic field, dispersion and dissipation from being included in a
single lagrangian analysis.

In Section IV the development of tranéverse fields is considered in
detail. The solutions of the electrostatic problem enter as known coefficients
depending on space and time in the wave eguation. Several limiting cases are
treated, In one of these, the solutions are unstable for an infinite number
of narrow ranges of the transverse wave number. The growth-rate is calculated
explicitly for a specific example. This nonlinear instability is limited by
the influence of the magnetic force which was neglected in the electrostatic
approximation of the preceding sections. The total energy in the transverse
oscillations is bounded by the total amount of energy in the initial electro-

static and electromagnetic perturbations.



In Section V the stationary solutions are studied. In the electro-
static approximation the cold plasma form of the Bernstein-Greene-Kruskal
waves is derived. These are periodic in space and the requirement of
uniqueness of the Lagrangian transformation is shown to imply the absence of
trapped particles. It is also shown that the oscillations of Section II never
take the form, in space,of these stationary solutions.

The transverse fields are unstable in space. The growth is again
limited by the magnetic force in the longitudinal problem. Finally, an exact
class of solutions is obtained for the complete problem including all magnetic

force terms,anda specific example is considered in detail..

IT. ONE-DIMENSIONAL ELECTROSTATIC OSCILIATIONS TN A COLD FIASMA

(a) Solution in Lagrargian Variables

Assuming that the ions form a fixed, uniform background, and thet
the pla sma is cold, the one-dimensional Maxwell-fluid equations for the electxn
density, n(x,t), electric field, E(x,t), and electron velocity, v(x,t}, read

in the electrostatic approximation:

"5% n + 5382 (av) =0, (2.1)
d \
5p B - bwenv = 0, (2.2)
) o e
-gt-V+V§-£V=-EE, (2'3)
and
%XE = -hne(n~n0) s (2.4)

where n0 is the uniform ion density. Poisscn®s equation may be thought of as

an initial value to Eq. (2.2). By virtue of the continuity equation and Eq.

(2.2), Relation {2.4) remains true for all times if true initially.



Introducing the Iagrangian variables, (xo,T), as nevw independent

variables, where

T4t ,

T
X, = X -\/;V(XO,T')dT' 5 (2.5)

Equations (2.1)-(2.3) may be rewritten in the new variables as:

3 [ T3 Pyaet )
P Ln(xo,T) <} +\/; SES v(xO,T JaT /J =0, (2.6)

5? E(xO,T) - Mnenov(xO,T) y (2.7)

and

e s N

5% v(xo,r)
where Poisson's equation has been used in obtaining Eq. (247)« The trans-
formation, Eq. (2.5), has the effect of replacing the convective derivative,
o/3t + vd/X, by the local time derivative, d/dr. From Equations (2.7) and
(2.8), v(xo,T) has the motion of a simple harmonic oscillator, oscillating at
the plasma frequency, wo, i.e., 5

2 o hnnoe

) 2 N
- V(% TIHTV(x0,T) = 05 W T = (2.9)

The general solutions to the system (2.6)-(2.8) are then simply,

= THE ( i 2o (’\.
v(xO,T) V(xo)coswo.*uox\xo)31nw07 R (2.19)

m . m 2 \
E(AO,T) =3 wOV(xo)szanT— 3 ¥ X(xo)costT , (2.11)
and
n(xO,O) A
n(x, ,T) = . (2.12)
° 14 - CH V(x.)sinw T+ S X(x,.)(l-cosw.T)
wo Koy 0 0 Eko 0 { 0

The functional dependence of V and X on x,. is related to the initial veleccity

0




and electric field profiles, v(xo,o) and E(xo,o), through

w ) = = S .13
V(AO) = v(xo,o), and X(xo) = —3 E(xo,o) . (2.13)
0

In addition, X(xo) is related to the initial density, n(xo,O), through

Poisson's equation at 1=0, viz.,

a n(xoﬁo) L
-g}-{z X(XO) = ————-—no -1 u (2’1 )

v(x,)

X = X + ——ag— sinw T + X(xo)(l-costT) . (2.15)

The transformation from Lagrangian to Eulerian ccordinates, i.e., the deter-
mination of Xo as a function of x and t from Eq. (2.15), requires an explicit
specification of the initial conditions, V(xo) and X(xo), and in general
entails the algebraic solution to a transcendental equation. It is evident
from the solutions, (2.10)-{2.12), however, that coherent oscillations at the
plasma frequency, wo, are maintained indefinitely over the region of initial
excitation.

In addition, there is a restriction of the class of initial-value
problems which may be treated by the procedure just outiined. The conditicn
that the density be non-negative initielly, requires only that

n(xO,O) 20 . {2.16)
However, asking that the solution for the density as given by Eq. (2.12)
remain non-negative and finite for all times gives the more restrictive
condition

n(xo,o) >n /2 , (2.17)

/
O/

as well ss



1 a n(XO,O)
'Ja |&-(-)- V(Xo)l < ——-—-———-no . (2’18)

Relation (2.14) has been used in deriving inequalities (2.17) and (2.18).
Consequently, a lower bound of no/2, not zero, is placed on the amplitude of
the initial density perturbation. Also, the rate of change of V(xo) with XO
is restricted. These do not represent physical limitations on the cold plasma
initial conditions, but rather mathematical limitations on the Lagrangian
formalism that has been used. Mathematically if conditions (2.17) and/or

(2.18) are violated for scme range(s) of x., the transfcrmation from

0’
Lagrangian to Eulerian coordinates, as determined from Eq. (2.15), does not
remain unique for all x and t. Physically, circumstances in which these
conditions are violatgd for scme range(s). of Xy lead to the development of
multistream flow within half the period of a plasma oscillation.l Considera-
tions here, however, will be restricted to initial-value problems for which

inequalities (2.17) and (2.18) are satisfied.

(b) Example with Inversion to Eulerian Coordinates

As a particular non-trivial example for which the inversion to
Bulerian coordinates may be carried out explicitly, let us consider initial

conditions specified by a sinusoidal perturbation in density,

n(xy,0) = no(l—l-Acoskxo), lal <1/2 , (2.19)
and zero velocity,
V(XO) =0 - {2.20)

The solutions (2.10)-(2.12) may then be written

W

0 . . \

= 2.21

v(xo,T) = A51nkx051nw07 , ( )
mn . 2A .

_.m, 22 2,22

E(xO,T) - W, 3 Sinkxcoso T, ( )



and
1+Acoskxo

%o lﬁﬁcoskxo(l~cosw075 * (2.23)

n(xo,T) =

In addition, the coordinate transformation, (2.15), becoumes,

T=%t ,
Ix = kx + Q(T)sinkxo , (2.24)
where
o(t) = 2Asin® :g: : (2.25)

The condition that |A] < 1/2 ensures that |Q(7)| < 1 and that the solution,
xo(x,t), to Eq. (2.24) is single-valued.

The solution may be determined numerically from Eq. (2.24) at

different times, and the corresponding forms of n, v, and E, in Eulerian |
variables deduced from Expressions (2.21)-(2.23). For example, taking A = .45,
the density is shown as a function of x in Fig. 1, at successive quarter-

periods of a plasma oscillation. The x and t dependences are periodic, with

periods 2n/k and 2n/wo, respectively. The dense regions fill in the rare
regions in the first quarter period (wot = n/2). As time goes on, the electro-
static forces are such as to cause a "bunching" of electrons around

kx = 2ntl)n 3 n = 0,+1,*2,..., (2.26)
reaching a maximum density of 5.5no at wot = 5t« The dense peaks fill in the
rare regions and the system reverts to its initial state. The corresponding
velocity and electric-field profiles (not presented here) exhibit a steepening

of the initial wave form sinkx, without change in maximum amplitude.

We return to the problem of determining explicit analytical express-

ions for n{x,t),v(x,t), and E(x,t). It is evident from Eq. (2.24) that sinlx

and coskxo are periodic functions of x with period 2n/k. Consequently, the
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density, electric field, and velocity as expressed in Eulerian coordinates,
possess Fourier-series representations in x. TFor example, v and E each contain

the factor sinkxo(x,t), which may be written as,

o©
sinkxo(x,t) =Z an(t) sinnkx , (2.27)
n=1
where
k 2n
a (t) == dx sinnkx sinkx (x,t) . (2.28)
n TJ o 0
The integration may be carried out using the relation between x and XO pre-
scribed by Eq. (2.24), giving
a (t) = (-1)" == 7_(na(%)) (2.29)
n () ' :

where the Jn are Bessel functions of the first kind. The electron fluid

velocity and electric field in Eulerian variables are thus given by,

<]
- .0 -1)8 - 2
v(x,t) = = A _‘( 1) m I, (nQ(t) )sinnkx sinwst (2.30)
n=1
and
E(x,t) = %—%—- Z 1" soe7 Ja(pa(t) )sinnir cosugt .« (2.31)
n—
From Egs. (2.4) and (2.31) we obtain for the density,
2n. A n
- -1) ‘) Yeosnlax . L
n(x,t) ¥ ETszlJ( 1) Jn(nﬂ\t),cosn_ cosw b (2.32)
n=1

Expressions (2.30)-(2.32) are thus exact solutions to the initial-value
problem (2.19) and (2.20), and demonstrate quite explicitly the distortion of
wave forms as manifested througn the generation of higher harmonic dependence
on kx., In addition, the form of Egs. (2.30)-(2.32) is useful to provide a

convergent series representation of n, v and E in powers of the amplitude, A,
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of the initlal density perturbetion. The reader will also have noted that
the method of inversion used above is not limited to the case in which n(xo,o)

has a simple sinusoidal dependence on x., but may be generalized to treat any

0]
initial density perturbetion which itself has a Fourier series representation
in x,.

In addition, we remind the reader that the preceding analysis deter-
mines the solution to the Vlasov equation with self-consistent electric field,

and initial value for the distribution function of the form,

£(z,v,0) = no(ltAcoskx)a(v), lal < 1/2 . (2.33)
The solution for all times may be written in the form

f(x,v,t) = n(x,t)8(v-v(x,t)) , (2.34)
where n(x,t) and v(x,t) are given by Egs. (2.30) and (2.32). The plasma
which is initially cold, remains cold for all times in the sense that no
random motion relative to v(x,t) develops. For more general initial conditicms
for the density, n(x,0), and mean velocity v(x,0), the solution for f(x,v,t)
in the cold plasme problem may still be written in the form given by Ed.
(2.34), provided inequalities (2.17) and (2.18) are satisfied and consequently

multistream flow does not develop.

ITT., GENERALIZATIONS OF THE ELECTROSTATIC PROBLEM
3

(a) Nonlinear zero-temperature Bernstein Modes
The analysis of Section II may be generalized to describe the non-
linear behavior of large-amplitude electrostatic oscillations perpendicular

to a uniform, static magnetic field, B With unit Cartesian vectors (gl,

O.
§2’§3)’ we take B along §3, and as before consider spatial variations in the

x-direction (%l). The electron velocity, v(x,t), may be written as,
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X(x,t) = v(x,t)g (A t)e +V, (x t)e3 , (3.1

and the electric field, which is along the direction of spatial variations in
the electrostatic approximation, becomes,

E(x,t) = E(x,t)je:l . (3.2)
The plasma is again assumed cold. Equations (2.1) and (2.2) describing the
evolution of E(x,t) and n(x,t), remain unchanged. However, the electron

velocity in the % -direction now obeys

ov ov By a
FTrVE TR % o (3-3)

and the two additional degrees of motion satisfy,

3% Vo +V 52 vy = Qv (3.4)
and
g—v+vav3=0. (3.5)

Defining Lagrangian coordinates following the x-motion by Eg. (2.5), Egs.

(3.3)-(3.5) read in the new variables,

3% v(xo,T) = - i E(xO,T)-QOvz(xO,T) s (3.6}

2 v (x,,7) = 8,v(x ) (3.7)

S Vol\FgrT) = gV XTI s \5e
and

Sy (x ,7) = 0 (3-8)

5r 3 ¥g = . Je

The system of equations to be solved in Lagrangian variables now consists of
(2.6), (2.7) and (3.6)~(3.8). From Egs. (2.7), (3.6) and (3.7), v(xO,T) is
seen to have the motion of & simple harmonic oscillator, oscillating at the
upper hybrid frequency, wUH
. 2 2

2 2
2 V(XO,T)"'U-)U.HV(XO’T) = O’ wUH = wo +\Qo . (3'9)

s lees,



Consequently, the only modifications of the solutions (2.10) and (2.12) for

V(XO,T) and n(xO,T), and the coordinate transformation (2.15), is that w_ is

0
replaced by W e The guantities, Vé(XO,T), E(XO,T) and v3(x0,7), as deter-
mined from Eqs. (3.6)-(3.8), are then given by

Q
- o 1 ~r -
VE(XO,T) = ve(xo,o) + oo {V(xo)51anHT + wUHx(“O)(l coswUHT)} , (3.10)
m wog m 2x m 2
E(XO:T) =3 aa; V(xo)31anHT -2 Y% (xo)coswUHT--g (Qo X(xo)+gov2(xo,0)) 5
(3.11)
and
V3(XO,'T) = V3(X0,O) ) (3‘12)

thus giving a complete description of the problem in Lagrangian variables.

The explicit behavior in Eulerian variables depends on the details of the
initial conditions chosen for the problem. However, it is clear that coherent
oscillations at the upper hybrid frequency are maintained for all time in the
region of initial excitation. In terms of the initial conditions, V(xo),
V2(XO’O) and n(xo,o), the conditions that the transformation from Lagrangian
to Eulerian coordinates be unique and that multistream flow does not develop,

now become,

2 2
n(x ,0) 5 W -0
0 2
P - =5 3 Vp(x0:0) > 22, (3.13)
0 w 0 2w
0 0
and 5 o )
Q w" n(x.,0 Q
110 0 0 0’ 0 0 .
EGEIEE; V(xg)|< 2 + 5 2 B, ., 23 Vp(X550) o (3.3%
UH UH UH

Conditions (3.13) and (3.14) reduce to the inequalities (2.16) and (2.17) for
QO - 0, as they should, If there is no initial shear in the electron velocity
(sz(xo,o)/axo = 0), conditions (3.13) and (3.14) become less and less res-

trictive with increasing magnetic field strength.




(v) Thermal Bffects

Modifications due to dispersion resulting from finite plasma tem-
perature may be described by including the force due to pressure variations
in Eq. (2.3), i.e.,

%%Y”é‘i'“"ﬁsE‘a%&oP- (3.15)

The evclution of the electron pressure, P, as determined from the appropriate

moments of the Vlasov equation, is given by

<§§ + v §> <-I-1§> =0, (3.16)

in circumstances where the electron heat flow may be neglected,,LL This corres-

ponds to the approximation, (wo/k) >> v__, where 1/k is the (typical) length

TH

scale of the disturbance being studied, and Von

In Lagrangian veriables defined by Eq. (2.5), Egs. (2.6) and (2.7) remain

is the electron thermal speed.

unchanged with inclusion of pressure effects; however, the equation for

v(xO,T) is now given by

o e 1 Is)
> V(XO:T) =" n E(XO;T) - n(XO,OTII_I 6}{0 P(XO,T) ) (3-17)
where
n(x T)3
o)
P(XO,T) =— P(XO,O) . (3.18)
n(xo,o)
Differentiating Eq. (3.17) with respect to T, we then have that
o)
2 P(x,.,0) . v(x.,T)
S 2 3 0 0’ 0 0’ a
— v(x,,T)H0 "v(x,,T) = }'~ (3.19)
872 0 0 0 n(xo,o)m on (1 + de SSS V(XO,T')dT')u

The solution to Eq. (3.19) is not mathematically tractable except within some
additional approximation scheme; we discuss only one of these here. It zhould

be noted that in an order of magnitude estimate the thermal effects ars
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2 2
smaller by a factor kavTH Wy relative to the other terms in Eq. (3.19). TFor
purposes of a qualitative description, the model we adopt is one in which the
final term in Eq. (3.19) is approximated by its linearized version. In

particular, for the case of an (initially) uniform pressure Py, Eg. (3.19)

becomes
—éﬁ v(x ., T)+w 2v(x T) = 3W 2\ 2 —§E~ (x.,T) (3.20)
52 0T o Ve T/ = o ™ &xe"“o’”r .
0
where
P
sz5—-—°——2- . (3.21)
Dy

Strictly speaking, Eq. (3.20) is applicable only in a small amplitude analysis
However, it may be expected to give qualitatively correct behavior even for
moderately large (initial) amplitudes provided steep spatial grandients do
not develop in the course of time (as was the case for the initial conditions
chosen for Fig. 1, Section II), For initial values of the form of a single
monochromatic wave of wave number k, the analysis goes through as in Section
I1-(b), the essential modification being a slight frequency shift from 0y o
wo(l+3k2KD2)l/2. However, for initial conditions which are absolutely inte-
grable, the long time solution to Eg. (3.20) has quite different behavior than
for the case of a cold plasma. The analysis of Section II indicated that
coherent plasma oscillations a;e maintained indefinitely in the region of
initial excitation, whereas, in relation to Eq. (3.20) the inclusion of thermal
effects leads to a dispersion of the disturbance throughout the plasma. The

solution to Eq. (3.20) may be written in terms of its Fourier integral rep-

resentation as

v(xy7) = \[dkoeikoxo{v(ko)cosw(ko)'r+w(ko)X(ko)sinw(ko)'r} (3.22)

where
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2, 241/2
w(ko) = wo(1.+31:0 AD ) / . (3.23)
The quantity, V(ko), is the Fourier transform of the initial velocity pertur-
bation, v(xo,O), and X(ko) is related to the transform of the initial electric
field by
(e )X(k ) = - £ B(x_,0) . (3.24)
0 0 m 0’

A straight forward stationary phase analysis of Eq. (3.22) indicates that the

oscillatory terms phase mix to zero as (1/71/2) for large 7.5 For example,
the first term decays'as
, 1/2
T . . ~
(———~——é> V(kO=O) X (oscillation at frequency wo), (3.25)
30y

for large T. Estimating V(ko=0) ~ VA where V and A are the characteristic
magnitude and (spatial) width, respectively, of the initial disturbance
v(xo,O), we see that V(XO,T) decays to a negligible level compared to V in a
time t, where
2 2 (2 -

wst >4 /).D . (3.26)
It should be noted that the time integrations over v(xO,T) involved in the
transformation (2.5), and the solution for n(xo,T) as determined from Eq.
(2.6), have non oscillatory portions which do not phase mix to zero., The time

asymptotic hehavior is convenieatly written in terms of X(xo) and may be

summarized as follows:

v(xo,'r - o) -0, (3.27)
5 83X(xo)
n(xo,'r - ) —->n0-3no7\D 5 (3.28)
and 0
2
5 ) X(xo)

E(XO,T — o) - 12xn_eN s (3.29)

0 D 2
on
where XO(X,T - ») is determined from



N

= . .30)
X = x5+ X(xo) (3.30)
That is to say, a low level, stationary electric field remains, together with
its associated density profile. This represents a balance between electro-

static force and the (long time) force due to pressure variations in the model

that has been used.

(¢) Dissipation due to Collisional Drag

The effect of dissipation in the nonlinear analysis of Section II
may be simulated by including a collisional drag term, -vv, on the right-hand
side of the equation of motion, Eq. (2.3). The only modification of the systmm

(2.5)-(2.8) occurs for Eq. (2.8) which now reads,

a e 14
e v(xO,T) === E(xo,T)-vv(xo,T) . (3.31)
The velocity in Lagrangian variables then satisfies

»* J 2
a 2 V(XO’T)'!'V 51. V(XO)T)-H’JO V(XO,T) = O 2 (3'32)
T

where v has been assumed constant. The motion thus exhibits damped oscilla-

tions, with a damping factor exp(- % T), and oscillation fregquency

(woe-vz/h)l/e, where w_ > vy/2 by assumption. Consequently, v{x.,T) tends to

0 0"
zero for large T, as does the electric field, E(xO,T). Similarly, the density
may be shown to damp to the value of the uniform background density, Ny This
asymptotic time behavior cof course persists in the Eulerian frame, and is

valid for any initial conditions that do not lead to multistream flow. TFor

the case,

v << w (3.33}

O J

this restriction is still given (approximately) by inequalities (2.17) and

(2.18).
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IV. ELECTYRCMAGNETIC OSCILIATIONS
The complete set of cold plasma equations in situations where all

gradients are in the x-direction can be conveniently split up into three

subsets.

Subset A,
Leg o) =0, (4.1)
5EX
— = -hne(n~no) , (k.2)
BEX
5 < hﬂenvx , (L.3)
avx+ -alf-’f—-f(E+}- B-2v3B) (L)
T Vx T T T m VT e YyPm e VaBy) o *

This subset describes the longitudinal oscillations treated in the preceding
sections if the contributions to the Lorentz force in Eq. {k.l4) due to self-
consistent magnetic field are neglected. This neglect is apparently justified
if the fluid velocities are much smaller than the velocity of light and if the
fields By,Bz arising from electromagnetic oscillations are not much larger

than the electrostatic field Ex'

Subset B.
JE BBZ
_5% = hnenv&-c ~% (k.5)
aBZ JE
TR (4-6)
ov ov . 1
R R L )

This set describes transverse oscillations. We have put Bx (satisfying

BBX/BX = 0) equal to zero.
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Subset C.
oE OB
—3% = hﬂenvz+c —5% ) (4.8)
B aEZ
S=ex (+.9)
sz sz e 1
=tV o Bt 5 Ay - (4.10)

The system (4.8)-(4.10) describes the additional degree of freedom for trans-
verse escillations and is identical to subset B with the interchange of y ari
z, and the replacement of ¢ by =-c.

We now treat the case without external magnetic field, and in
addition neglect the magnetic force in Eq. (4.4). The solutions of subset A
are then known from Section IL Consequently, the quantities n(x,t) and
vx(x,t) enter the equations (4.5)-(4.10) as known functions. We solve the
equations of subset B keeping in mind that the solutions of Egs. (%.8)-{k.1C)
may be written down by analogy, and introduce the vector potential Ay related

to the fields by

A
Ey=--i——§, BZ=-§. (4.11)

This satisfies Eq. (4.6), and (4.7) reduces to

<a+vX §><vy-agzxy>= 0, (4.12)

expressing conservation of canonical momentum in a reference system moving

with v,. Equation (4.5) vecomes

2 2

iﬁ_}_i&—ﬁgn\r ()_[.]_3)
2 2 2 ¢ y *

oxt c® ot

From (4.12) we obtain vy in terms of Ay:
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vy = A +V (xo,t =0)- ( t—_—o) s (. 14)
where xo is the solution of .
t
— W um 3 1 I 4
Xo = A\/; vk(xo,t )at {L.15)

Substituting (4.1%) into (4.13) it follows that

2 2 2
dA oA, w
— - _%- —L - m = Fx,t) , (4.16)
Ox ¢ ot ¢ y
with
5 e By n(x,t)
wO = ™y s N = n )
‘ 0
and
_ bxren(x,t) S-S o1
Plx,t) = ZEMEE) [y (o 620)- 224 (x0,6=0)] . (5.17)

The function N(x,t) is periodic in t. Therefore Eq. (4.16) suggests the
possibility of parametric resonance. In Section II expressions for N{x,t) and
vk(x,t) were obtained for the case of an initially sinusoidal density pertur-
bation and vx(x,t=0) = Q. We use these results in order to investigate the
properties of Eq. (4.16) explicitly. However, generalizations to other initial
conditions for the longitudinal problem are straightforward.

We denote the characteristic wave numbers of the longitudinal and

transverse oscillations by k. and k respsctively and the characteristic fre-

0

quency of the transverse oscillations by w. Since N{x,t) and F(x,t)

in Eq. (4.16) vary in space and time with characteristic wave number k, and

frequency w X considerations will be restricted to solutions, A y,with k2 ko

and W 2 w.. We discuss four different ordering schemes.

Q
1) w~ Wy, ke >> %
(4.16) reduces to
Fa \
‘—"% = F(x’t) ] (.:'118)

ox-
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describing the direct generation of the magnetic field BZ = aAy/ax by the
electric current density, cF(x,t).

2 W~ ke>>Ww

Eq. (4.16) reduces to

52A 1 62A
___}21-_:?.-—% = F(x,t) . (4.19)
X c” ot

The solutions of the homogeneous part of the equation are plane electromagnetic
waves. The inhomogeneous equation (L4.19) is easily solved by transformation
to the new variables, x, = xtct. The general solution of Eq. (4.19) in terms

of the initial values of the fields is given by

1
E, =5 [Ey(x»ct,t=o)+Ey(,<+ct,t=o)+BZ(x-ct,t=o)
x+ct 't
- B_(x+ct,t=0)]+ -]5\[ ax'F(x',t- -!-5{——3-{-]-) s
Z 2 c
~ct
1
B, =5 [Bz(x-ct,t=0)+BZ(x+ct,t=0)+Ey(::-ct,t=O)

x+ct '
E_(x+ct,t=0)]+ %‘Z‘ dx¥sgn(x-x* )F(x',t- JE%;EEL) s> (4.20)
y -ct
where the appearance of retardation is clear. The difference from the anslo-
gous three-dimensional expressions for the particular solution of the inhomn-
geneous wave equation should be noted. Equation (4.20) describes the gensre-
tion of high frequency short weavelength transverse fields.
3) k >> Kk, 0~ Wy~ ke

This limiting case has the effect of introducing two space scales

in Eq. (4.16). Reserving x for the fast variations in space, and intro-

ducing ¢ = kox for the slow variations, we see that a/ax is replaced by

ofdx + X d/d¢. 1In lowest order, Eq. (4.16) then beccmes



22

2

2 2w
[—a-%- - —%— —a-i-g- - _92__ N(g,t)] A (x,8,8) = Fx,8,t) . (k.21)
X Cc G C

We start by studying the solutions, Ayg, of the homogeneous part of Eg. (4.21).

Introducing the Fourier transform,

ooy -ikx
a() = [ 8 P00 (1.22)
it follows that,
2
JA
—gt% +{k202+ Oem(g,t)}Ak =0, (4.23)

Since N(&,t) is periodic in t this is a Hill equation. In order to discuss
Equation (L23) and make use of well known results of the theory of Mathieu and
6,7

Hill equations, we write N(&,t) as a double Fourier series for the case of
an initially sinusoidal density perturbation with vx(x,t=0) =0, - (the

example discussed in detail in Section II), i.e.,

+00 +00
M(E,t) =Z ZNz expl[-isT+img] , ‘ (4.24)
’m
J==c0 m=-00
where T = Wyt. Then with §O = koxo and Egs. (2.23)-(2.25) we find
N = aT ae N(¢.,T exp[i4T-img (€ ,T
£,m (2n)2 o o 00 Sg'(; 0’
1 2% 2n
= 2f de d§0(1+Acos§O)exp[i,@T-j_mgO-imA(l-cosT)singo] .
(en)"vYO 0

Using standard trigoncometric identities and series expansions with Bessel

functions the integrals can be evaluated with the result

+0o0
_ 2+2q \
Q==
The following properties are readily established:
= \T = = T - -
Noo=1r Ny o=0for s 40, Ny =N, =N, =N,
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Therefore
N(E,b) = 1+ey(§)+uz My(8)cossr (4.26)
£=1
with o
Y(E) =Z No,uc08mE (4.27)
and m=i
N
Nﬂ(g) =L Nz,mcosmg . (4.28)
m=1

If A << 1 ve may expand in powers of A and obtain after considerable algebra

= l+Acos§cosT+Azcosag[-]é'- -cosT+ X cos2T]

2
+ A3[cos§[-g —Z- cosT+ % cos2T- §'2" cos3T}
+ cos3t{- % + -— cosT- % cos2T+ -3-92— cos3T}]+0(Au) . (4.29)

Equation (4.23) may be written in the standard J’:‘orm6"7

62Ak =
= L .
=2 + [60+2Z eezcosa.e'r:] A, =0 (4+.30)
[] z:l
where T = T/2. The 6,, follov immediately from Egs. (4.25)-(4.28). TFor small

A we get from Eq. (4.29)
0= h<l+

enl (1- -—Z A )cost-Acos2t+ 22

A [E cost+cos2E- %Acos3§]+O(Au)

)

2
k °Z> + .21. [A3cos§+1LA2c082§-9ﬁ3COS3§]’*’O(AL‘-)
w

] Azcos3g]+o(A”)

2

%
3
6g = % (-cos§+9cos3§)+0(Au)

0 = 0(a") . (+.31)

6,7

It is well known ’' that the solutions of the Hill equation, Eq. (4.30), have

the form



2k

by = & e(T)B(r)ed exp(-ur)f(-7) (.32

where a and b are integration constants, and §{r) is a periodic function.
Depending on the coefficients 622, p is either purely imaginary implying
stability, or of the form, ri+pR, where r is an integer or zero and g is
real, implying instability. It is the latter possibility which is of special
interest here,

The guantity p is given by6

coshmy = 1-28(0)sin® Z Vo, (4.33)
where S(0) is the infinite determinant,
L 9 Oy % %
8,16 8716 516 516
6, . 6, 0, 6
e 6% Ok B%
0 6 8
s(0) = e = 1 = - . (4.34)
0 0 0 0
I % 9 o, L %
e S e
| 6 6 0, 0, .
5,16 5,16 516 O o 16

It has been assumed thaﬁ’@o # hre, r = 0,1 etc.

If all terms of 06&2) are neglected, then Eq. (4.30) is a Mathieu

6,7

equation with stability diagram as given in Fig. 2. We see fram Eg. (k.31)

that 60 > 4 and the first unstable region is near 60 = @, Therefore we

consider Eq. (4.30) with

22
eo = h(}j—ﬁ CE ¥9, 0, = 2Acosé, 922 Ofor £>1. (4.35)
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In this case we use the results of Ref. 6, page 17, describing the boundary
curves of the stable regions in Fig. 2 in order to find the region of insta-

bility. Unstable waves develop for k in the range

22

k¢ 5 1.2 2. 1,3 3
e <f + 3z Acos"E+ 35 A% |cost]” o

0 (L.36)

The width of this range is clearly of order A?. The maximal growth rate

% + i% N 5% a3]cost|3 <

follows from Ref. 6, page 101, and is given by

Mpmax = H% Aslcos§|3 . (4.37)

The growth rate takes this maximal value when k2c2/w02 is approximately in
the middle of the interval (4.36). On both sides of the middle up decreases
until it vanishes at the boundaries of the interval. 1In a similar way resul’s
may be obtained near 60 = 16,25... with growth rates and unstable k ranges

of order AF,A? ete,

If A is not small (but still A < 1/2) it can be shown that the
unstable regions and the growth rates are much larger. This is suggested by
Fig. 2. This stability diagram, however, is no:' lohger valid because
922, £ > 1 will also play a role. It should also be realized that since

Ve «:Awo/kb ~ Ack/ko the presemt non-relativistic treatment is only justified

if
kO
ALK =<1 . (4.38)
Therefore larger values of A together with ko << k require a relativistic
treatment or restriction to spatial regions for k X ~ nx (n is an integer)

0
since there v is small according to Eq. (2.21). It must also be recognized

that Eq. (4.23) breaks down after a sufficiently long time. This can be seen

as follows. If we take a derivative with respect to x in Eq. (4.32), a facteor
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t appears since py depends on kX (see Bg. (4.37)). Since such terms were
neglected in writing Ed. (4.23) we have the requirement

wO+A3ko <k . (4.39)
Consequently the explicit calculations are only valid for a restricted time;
however, considerable growth is possible in Eq. (4.32) since the growth rate
is of order woA3 and ko XK k., gecularities might be avoided by means of a
generalized W.K.B.-method and it is therefore not to be expected that the
restriction (4.39) represents a serious limitation of the theorwy.

Questions may be raised regarding the energy source of the insta-
bility., It is clear from total conservation of energy that the amount of
energy in the unstable transverse oscillations can never exceed the energy
content of the initial longitudinal and transverse perturbations. It is of

some interest to examine the energy balance for the longitudinal and trans-

verse oscillations separately. It can be easily shown that

§E< amv_ +E2> E{( nmv. >=-—K, (L.40)

§E< nmv +—18————-> §—< v v+ Esz>=+K, (4. 41)

where

B
(E B, V., 5% 558:—— (k.h2

The right hand side of Eq. (4.40) is due to the magnetic force -e/mc vyBZ in
(4.4) which was neglected in preceding calculations. The quantity X in
(4.41), however, was not neglected in the treatment of the transverse

oscillations. It is this quantity which makes the transfer of energy from the

longitudinal into the transverse oscillations possible. If we start initially

with Ey2+BZ2 << Ex2 then ultimately Ey2+BZ2 is of the same order of magnitude
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as Exe. Comparing the magnetic force with the electrostatic force in Eq.

(k.4) it is easily seen that

v. B E 2
Sz By (4.43)
cE k 2

X 0 Ex

Therefore in view of Eqg. (4.38) the magnetic force is still relatively small
when the energy of the transverse oscillations has reached its ultimate level.
Nevertheless it is this magnetic force that is responsible for turning off
the instability.

Thus far, only the solution to the homogenecus part of Eg. (k.21)
has been discussed. This corresponds to initial conditions with zero canoni-
cal momentum in the y-direction as is seen from Eq. (4.17). 1In general, if
F(x,0) # 0, we must add a particular solution of the complete inhomogeneous
equation. For instance instead of Eq. (4.23) we have

P,

———% + {k?c
ot

2,2
o N(E,0)IA, = B (6,t) (Lo lle)

where Ak(g,t) and Fk(g,t) are the Fourier transforms of A(x,t,t) and F(x,{,t)

respectively. A solution of Eq. (k.bh) is

~ t dat! ¢! ~
ne = B 28— [T anieeer] )
B (et")

where Kk(g,t) is a solution of the homogeneous part of Eq. (4.hk). The zeros
of By(8,4') in Eq. (4.45) can be accoimodated by suitable choice of integration
contour in the complex t'-plane.

0’ ke K wo
In this case Eg. (4.16) reduces to
Fa 5 5
—L w0 “N(x,t)A. = cF(x,t) , (4.146)
Bta 0 y

) k~k




28

and we recover Eq. (4.30) and Eq. (4.31) where now 60 = M+O(A?). Tnstability
seems possible again since 90=h is a point where an unstable region extends
to the Go-anis in the stability diagram, Fig. 2. However, we remind the
reader that the width of the unstable region is of order A? and the neglect

of k2c2/wo2 in 90 as given by Eq. (4.31) is only correct if ke < wdﬁ. There-~

fore with k ~ ko we find in general that v, woa/ko > ¢ which is inconsistent.

Consequently, the unstable solution is possible only for k. x ~ nx (n being an

0

integer) where v, is small according to Eq. (2.21).

V. STATICNARY SOLUTIONNS
We now investigate time-independent solutions of the Egs. (4.1)-
(4.7)e Again solutions of Eqgs. (4.8)-(4.10) are quite analogous to those of
Eqse (4.5)-(k.7). We will treat the purely electrostatic problem leading to
cold plasma version of the Bernstein-Greene-Kruskal (B.G.K.) wa.ves,8 the
electromagnetic problem using the electrostatic results, and a special case
of the complete problem including the magnetic force in Eq. (L.k).

(a) Electrostatic Problem

Allowing for a constant velocity, Vo? of the uniform background,

the relevant equations are

nv, =n.Ve (5.1)
dv.
. X e
e & T m x G-2)
aE,
_—d}( = _f_;ﬂe(n-no) . (5'3)

We introduce the lagrangian coordinate n by

Yl
x =L/; vx(n')dn' s (5.4)

implying
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a d
xax T °
The equation for v becomes
2
d'v
X 2 2 .
— WY = w5V, . (5.5)
dﬂ2 0 x 0 0
Consequently
v, = Votacosw n+bsinwm (5.6)
n.v
n=—22, (5.7)
b
m .
E, = -3 wo(bcosmon-asmwon) s (5.8)

where a and b are integration constants.

The transformation given by Bg. (5.4), beccmes
1 R
X = v+ -(;6 (asinwg+bfl-cosug)} . (5.9)

If we choose the origin such that E =0 at x=1=0, then b=0 and Eq. (5.9) is the
same as the second line of Eq. (2.24) if we replace Xq by von, k by wo/vo and
Q by a/vo. We can then use the inversion formulae, Egs. (2.27) and (2.29),

and obtain for Ex’

E (x) =2y Rl Z ——-L < >sn.n il-ui x—- (5.10)

n=1
Substituting this into Eq. (5.3) it follows that
", . (e RO
n(x) = no-2noz (-1) I, ( T) cos —==— . (5.11)
= 0 0

Writing

(2]

)
= a_cosnx'
Vx Z_, n ’

n=0
where
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o
[

1 2x
o— ! 1 1
0 S ﬁ\/; vk(n )eosnxdx

It

2n
1 dx?!
;;L/; v, (n')cosnx* (q') Fy dn', n#0,

2n
" 1y &! '
ao = Oxn o Vx(ﬂ ) dn! dﬂ 3

we find after some algebrs

[=4]

v (x).. Vot :‘ -Z 2a (-1)%s '( >cos -r-l-(fgc- (5.12)

n=1

where Jn‘ is the derivative of Jn with respect to its argument.

Some interesting results are implied by the above analysis. In

Section II the calculations were only valid for @ < 1. In a similar way the

validity of the present analysis requires a < Vo It then follows from Eq.
(5.6) and b=0 that v, nowhere changes sign. Consequently, no electrons are
trapped. The condition a < vo, which is necessary to ensure the uniqueness

of the Lagrangian transformation, excludes trapped electrons from the formalism.
This is not surprising since the coexistence of trapped and free electrons
cannot be described by the one-stream cold plasma model.

It should also be noted that the solutions (5.6), (5.7) and (5.8)
cannot be obtained by Yreezing" the solutions of the time-dependent problem
in Section II, i.e., at no instant of time do the solutions in Section II,
properly generalized to include the background flow velocity, take the spatial
form of a cold B.G.K. wave. Furthermore, it is remarkable that in a cold

plasma only periodic B.G.K. waves of a very special form, given in Egs. (5.10),

(5.11) and (5.12), are possible. This is in sharp contradistinction with tae
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situation in a hot plasma,8 and is due to the absence of trapped particles.
In addition, it should be noted that the spatially averaged electron velocity
o but rather v + a2/2vO as is seen from Eq. (5.12).

(b) Electromagnetic Problem

does not equal Vv

Having obtained the solutions to the electrostatic problem we now

consider the stationary form of the equations (4.5)-(4.7) treating n(x) and
vx(x) as known quantities through Eqs. (5.11) and (5.12). It follows that

dEy .
== =0 , (5.13)
e e ,
vy 3% (V&- EE.Ay) =- = Ey ) (5.14)
2
da A
y _ lren(x) _
— -l Lo, (5.15)

where Ay is the y-component of the vector potential. Choosing Ey:O and

__e o . N . _
Vo = Ay in order %o satisfy Egs. (5.13) and (5.1%), we obtain (n-noN)
d?A w02
—f -5 N(x)A =0 , (5.16)

c

i.e., a Hill equation in space. In general the solutions of Eq. (5.16) are
growing in space because of the minus sign. For special values of the

"atable"; see

Fourier coefficients of N(x), however, the solutions can be
Fig. 2 in Section IV. It may be expected, as in Section IV that grouving
solutions are limited by the magnetic force which was neglected in the longi-

tudinal part of the problem.

(c) Special Case of the Complete Problem

If we consider the background to be at rest, i.e., VO=O’ but retain

all magnetic force terms, it follows.from Egs. (4.1)-(4.7) that

v =0, E =0, (5.17)
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dE,
~% = -hne(n-no) ’ (5.18)
E_+ L vB =0 19
2 VB, =0, (5.29)
and dBZ
Lmenvy =C-3 . (5.20)

Egs. (5.18)-(5.20) permit a non-trivial class of solutions. If one of the
functions n(x), Ex(x), vy(x) or Bz(x) is prescribed the others can be calcu-

lated. As an example we consider

n = no(lhﬁcoskx) s (5.21)
which gives
Lnen
E, =-— sinkx , (5.22)
and
5 8n2e2n0%ﬁ 1/2
B, = [B - — (hcoskxtAcosEkx)] , (5.23)
4 0 k2
where B02 enters as an integration constant that must obviously satisfy tke
inequality
5 8ﬂ2e2no%ﬁ
B, 2 ———es—— (L+) ,
0] 2
k
Finally,we find for vy
v =c hnenda sinkx (5.24)
vy k 8r2eln2A 1/2 *
p2. 12700 (hcoskxt&cosekx)w
0 2 |
In order to justify the non-relativistic treatment there is the additional
requirement hnendﬁ
S K1,
0
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FIGURE CAPTIONS
Fig. 1. Density profiles with A = .45,
Fig. 2. Stability diagram for Mathieu Equation according to Ref. 6 and 7.

Stable regions are shaded.
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